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Abstract

Traffic accidents are costly. This project identi-
fies accident hot-spots based on current data and
runs a predictive model to predict under which
circumstances an accident would occur in these
hot-spots, and if so, the severity of the accident.
It then compares the performance of different al-
gorithms for multi-classification such as SVM,
random forest, and multinomial logistic regres-
sion. Finally, suggestions for practical imple-
mentations of the model are discussed.

1. Introduction
1.1. Motivation and Aim

According to a report by Penn Live, 1,200 people died in
traffic accidents in PA in 2018 alone. Given the cost of hu-
man life, and potential structural damage, identifying areas
with a high likelihood of an accident is necessary to target
measures to reduce such incidents. Most public agencies
currently use past accident frequency to target their poli-
cies. However, such an approach does not take into account
the dynamic nature of environmental and structural factors
such as weather and time. An area with a high frequency
of past accidents is not a hot-spot at all times of a day. An
accident severity prediction model will allow agencies to
deploy spatially and temporally targeted safety measures
to hot-spots only when they are predicted to be ‘activated’.
This project thus aims to create a model that can predict at
any time if a hot-spot is ‘activated’ (predicted to have an
accident) and if so, the severity of an accident.

1.2. Dataset

The models were trained on the US Traffic Accidents
2016-2019 (S.Moosavi & R.Ramnath, 2019a)(S.Moosavi
& R.Ramnath, 2019b) dataset that contained traffic acci-
dent data from February 2016 to December 2019 across
the US. We decided to focus on the city of Philadelphia in
Pennsylvania, where there were a total of 6224 accidents.

Table 1. Results of DBSCAN Clustering Algorithm

MAX BOUND MIN SAMPLES CLUSTERS POINTS

20 15 86 3354
25 15 85 3403
20 20 62 2921
25 20 64 2997
20 25 48 2602

Other than location data, the dataset contained temporal
data, weather data and road design of each accident. Ad-
ditionally, each accident had a severity score of 1-4 which
was used as the dependent variable in the model.

Demographic data such as median income for each area
was also obtained from the US Census and added to each
instance using the latitude and longitude.

2. Data Processing
Data processing methodology was largely taken from a Ma-
chine Learning project to predict traffic accidentses in Lon-
don, UK (Antonio, 2019).

2.1. Cluster Analysis

To identify accident hot-spots, the DBSCAN clustering al-
gorithm was run on the 6224 accident points in Philadel-
phia using different parameters. The parameter max bound
indicates the maximum distance between two points in the
cluster and the min samples is the minimum number of
points to be considered a cluster. The results in Table 2
show the number of clusters (hot-spots) identified and total
number of points that fall in any cluster. A max bound of
20 meters and min samples of 20 points per clusters was
chosen, resulting in 62 areas identified as hot-spots.

During clustering, each point in the original dataset is as-
signed a label identifying the cluster it belongs to. Each
accident instance represents a different feature setting for
each cluster under which an accident occurred, together
with an associated severity score. Each of these points rep-

https://www.pennlive.com/news/2019/06/traffic-deaths-ticked-up-in-pennsylvania-in-2018-pedestrian-accidents-senior-citizendrivers-are-two-reasons-why.html
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resent a situation in which the hot-spot is ’activated’ or in
which the severity score was non-zero. The clusters and
labels allow for prediction on targeted areas rather than on
an infinite number of points.

Figure 1. Traffic Accidents and Clusters in Philadelphia

2.2. Negative Sampling

For each accident in a cluster, 3 points were randomly gen-
erated in the cluster. It was ensured that no point in cluster
had the exact same features as a positive sample. The sever-
ity scores of these negative samples were set to zero.
After the data processing, each instance in the final dataset
had environmental data, a severity score (0 if no accident),
which would be the dependent variable, and an associated
cluster, which would allow future predictions to be made
on clusters.

3. Exploratory Data Analysis
The accident dataset was filtered to Philadelphia and rela-
tionships between features were explored.

3.1. Temporal Relationships

Figure 2 indicates a macro trend over months and days.
There is a clear increase in the number of accidents dur-
ing the winter months and on the weekdays, which is likely
due to workers commuting.

Figure 2. Count of Traffic Accidents by Month and Day

A similar heatmap was plotted to analyze hourly trends.
The heatmap confirmed that the highest accident counts oc-
cur during the morning (6-8am) and evening (4-6pm) rush

hours.

Figure 3. Count of Traffic Accidents by Day and Time

Figure 4 indicates the severity of accidents over a day.
There is a clear class imbalance with a majority of the ac-
cidents being classified as ’3’ for the year 2019.

Figure 4. Severity of Accidents per hour in 2019

3.2. Environmental Relationships

Figure 5 showed the count of accidents by severity and
weather condition. There were many options for weather
condition, and most accidents occurred only at a few types
of conditions. Though it was not done in this project, future
version of this project could include feature engineering of
weather to reflect this distribution.

Figure 5. Severity by Weather Conditions

4. Model Training and Validation
4.1. Model

The dependent variable in the model was the severity score
of accidents (0,2,3,4), with 4 being the highest severity and
2 the lowest. 0 indicated no accident. Features chosen for
the model were weather characteristics such as precipita-
tion and humidity, wind direction, month, and time of day.
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Each accident instance had an associated cluster for future
identification if a cluster was ’activated (severity>0)’ or
’not activated (severity=0)’.

4.2. Class Imbalance

As a result of the negative sampling and a reflection of the
natural state of the world, there were more ’non-accidents’
than ’accidents’. This resulted in a huge class imbalance
as in figure 6. Within the ’accidents’, there was also am
imbalance amongst severity, with there being very few
of highest severity. The following methods were used to
treat the class imbalance resulting in skewed accuracy.

Figure 6. Distribution of
Labels

4.2.1. CLASS WEIGHTS

Class weights were assigned
when running multinomial lo-
gistic regression and decision
trees with adaptive boosting
(AdaBoost). Classes assigned
a higher weight have more
emphasis in the model train-
ing.

4.2.2. UPSAMPLING

Upsampling was done on the test set before running logistic
regression. This was achieved using Sklearn’s resampling
function to bring the number of samples for classes 2,3 and
4 equal to the size of class 0.

Another upsampling technique, imblearn’s SMOTE (Syn-
thetic Minority Over Sampling Technique) was used before
running the voting classifier. All not-majority classes were
upsampled.

4.2.3. UNDERSAMPLING

The opposite to upsampling, undersampling takes a sample
from the majority class (class=0 in this model) to be equal
to the size of the minority classes. This was used in im-
blearn’s BalanceBagging and easy ensemble classifier, as
well as in Sklearn’s RandomForest classifier.

4.3. Learning Algorithms

Besides the following models, Support Vector Machines
were also tested, but they did not converge.

4.3.1. MULTINOMIAL LOGISTIC REGRESSION

Logistic regression is a linear classification model that cal-
culates for each instance the probabilities that the instance
is in each of the classes. Since this was a multiclassifica-
tion problem, the class with the highest probability for that
instance was selected. Probability predictions were made

using the softmax function.

For severity c=0,2,3,4:

p(y = c|x;θ0,θ2,θ3,θ4) = exp(θT
c x)∑

c=0,2,3,4
exp(θT

c x)

Where x are the bias term and predictors in the model, and
θ are the coefficients of the linear combination optimised
by the loss function.

The algorithm optimised the loss function with L1 regu-
larization to avoid over-fitting because of the large set of
one-hot encoded features.

Lreg(θc) = −
∑n

i=1[yiloghθc
(xi) + (1 − yi)log(1 −

hθc
(xi)] +

∑d
j=1 |θcj |

The above loss function was minimised using stochastic av-
erage gradient descent.

4.3.2. RANDOM FOREST

To prevent overfitting and reduce the effect of noisy fea-
tures, the Random Forest classifier was also used. This ap-
proach used an ensemble of decision trees with bootstrap-
ping replication. Bootstrapping replication is the process
of constructing new training sets by sampling different in-
stances with replacement, allowing trees to be trained on
different subsets of the data. At each split within each tree,
a random subset of features were selected as candidates for
the split, and the feature that resulted in the highest infor-
mation gain was selected for the split. The performance of
each tree was estimated using out-of-bootstrap data. The
prediction of the Random Forest was taken as the mean
prediction of the trees.

4.3.3. ADABOOSTED DECISION TREES

Besides the Random Forest classifier, AdaBoost was used
to induce diversity into the model as well. The AdaBoost
meta-classifier used with decision trees creates an ensem-
ble of decision trees by repeatedly emphasizing mispre-
dicted instances. This is done by assigning each instance
a weight which is updated using a function of the weighted
error over all instances in the model at time t. After T iter-
ations, the prediction is made using the aggregated predic-
tions of each of the T decision trees, weighted by a function
of their training error.

4.3.4. ALTERNATIVE ENSEMBLES

Alternative ensembles were also tested, these included the
voting classifier, easy ensemble and balanced bagging.
Both easy ensembles (similar to random forest) and bal-
anced bagging (similar to AdaBoost) were ensembles from
the imblearn package which had an inbuilt parameter to ex-
ecute undersampling. The voting classifier used the follow-
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Table 2. Results of Algorithms

ALGORITHM TOT ACC AVG ACC FALSE NEG

LOGREG 0.203 0.455 0.0
ADABOOST 0.575 0.507 0.291
RF 0.813 0.542 0.560
VOTING 0.753 0.411 0.687
BB 0.361 0.547 0.077
EE 0.345 0.578 0.085

ing classifiers in the ensemble - random forest, extra tree,
k-nearest neighbors and support vector machines.

4.4. Parameter Tuning and Result Metric

Sklearn’s grid-search functionality was used to select a set
of parameters for each model that optimised the objective
function. The grid-search cross validation was run on the
70% training set over 3 folds.

As our dataset was extremely imbalanced, the total accu-
racy was not the most meaningful metric. A model that
predicted 0 for all instances would still achieve an accu-
racy of 75%. Additionally, given the context of traffic acci-
dent prediction, the cost of a false negative is more than a
false positive. If a cluster was predicted to not have an ac-
cident and nothing was done to step up policing or increase
stop signs, but an accident did happen, this would be more
costly than if interventions were made even though there
was not going to be an accident. Hence, the average accu-
racy over classes and false positive rate were reported for
each model. The false negative rate was calculated as the
ratio of true 2,3,4 instances wrongly classified as 0, since
severity=0 indicated ’no accident’. For a visual indicator
of the errors in our model, the confusion matrix was plot-
ted after each model was tested.

5. Results and Analysis
5.1. Model Results

Various models achieved high accuracy in different classes.
Although the total accuracy is high for Random Forest and
the voting classifier, they have a high false negative rate,
as most of the predictions are of the class=0 (75% of the
dataset), even after fixing class imbalance. Conversely, the
balanced bagging and easy ensemble classifiers have a low
total accuracy, but provide the best trade off between aver-
age accuracy and false negative rate, thus are the best mod-
els amongst this for predicting the severity of accidents.

5.2. Misclassifications

The confusion matrix for Random Forest (best total accu-
racy) and Easy Ensemble Classifier (good average accuracy
and false negative rate) in figure 7 show the misclassifca-
tion rates for each class. Although the random forest classi-

Figure 7. Confusion Matrices

fier has the highest accuracy, it is not good at predicting in-
stances when there are accidents and the severity of the ac-
cident. The easy ensemble classifier does better at correctly
predicting when an accident does occur, as evidenced by
the darker diagonal in the confusion matrix. However, the
accuracy for is very poor for when there are no accidents,
and half of those instances were predicted as severity=3.

6. Conclusion and Future Work
In theory, the models trained can be used to predict at a
given time and environment (e.g. rainy Monday, 7am, De-
cember) if an accident will occur at each cluster location
in Philadelphia, and if so, the severity of the accident. An
application can be built with an interactive map showing
the various clusters generated in figure 1. If the cluster is
lit up, it indicates that an accident is predicted in that area
at that time. The color of the cluster can indicate the sever-
ity predicted (2,3 or 4). This application can be used by
traffic police to target their policing to enforce safer driv-
ing. However, the models presented still suffer from a high
false positive rate, despite a good false negative rate. Hence
it would still be costly to implement such models in prac-
tice.

To improve the model performance, better feature engi-
neering can be done as there were many one-hot encoded
predictors in our model. Reducing the number of predictors
in the model could reduce the variance in the model. Addi-
tionally, since the easy ensemble has a good false negative
rate, but misclassifies 0s as 3s, perhaps adjustments can be
made to address this, such as adding weights for class 0 in
the decision tree. Finally, the problem could also be seg-
mented into a binary classification model of ’accident’ vs
’no-accident’ and a secondary model to predict the severity
of an accident.
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